
Dear Reader,

welcome to my personal website — a place
where I publish random stuff that may or
may not be of interest to the general public.
This particular document is mainly an index
that points to the various things I make avail-
able on the web. You could start by reading
about some of the software I wrote; or you
may head over to the blog to see if there are
any new posts.

Frank Seifferth
frankseifferth@posteo.net

Blog / Writing 2

Software 4
Writing Utilities 4
Creating and Modifying PDFs . . . 5
Notebook Computing 7
Miscellaneous 8
Vis Plugins 11

Colophon 14

RSS Feed

updated

22 October 2025

mailto:frankseifferth@posteo.net
https://tilde.club/~seifferth/feed.rss

Chapter 1

Blog / Writing

22 October 2025

Using delta chat keys with notmuch
https://tilde.club/~seifferth/blog/delta-chat-keys/

3 October 2025

Re: Adding any external data to any PDF (Paged
Out!, issue 7)
https://pagedout.institute/download/PagedOut_007.pdf#page=19

24 June 2025

Combining pdf and zip proof of concept
https://tilde.club/~seifferth/blog/pdf-zip-poc/

1 June 2024

Removing Editing Restrictions from Office Docu-
ments (Paged Out!, issue 4)
https://pagedout.institute/download/PagedOut_004_beta1.pdf#

page=62

2

https://tilde.club/~seifferth/blog/delta-chat-keys/
https://pagedout.institute/download/PagedOut_007.pdf#page=19
https://tilde.club/~seifferth/blog/pdf-zip-poc/
https://pagedout.institute/download/PagedOut_004_beta1.pdf#page=62

BLOG / WRITING 3

18 December 2023

Creating PDF/Plain Text Polyglots with LuaLaTeX
(Paged Out!, issue 3)
https://pagedout.institute/download/PagedOut_003_beta1.pdf#

page=26

12 April 2023

On why this website is a pdf file
https://tilde.club/~seifferth/blog/why-pdf/

https://pagedout.institute/download/PagedOut_003_beta1.pdf#page=26
https://tilde.club/~seifferth/blog/why-pdf/

Chapter 2

Software

Writing Utilities

jotter https://github.com/seifferth/jotter

Jotter is a set of scripts that bring ctags-like functionality to
the world of markdown note taking. It is mainly designed for
keeping collections of book and article excerpts organised, but
also supports the inclusion of free-form notes that do not have
any associated bibtex metadata. Jotter supports the pandoc-
markdown citation syntax (strings like ‘@reference ’) for link-
ing notes together and includes a number of utility scripts to
provide additional features, such as listing all note ids that
match a given wildcard or looking up all entries that reference a
certain citekey.

cite https://github.com/seifferth/cite

Cite brings the most important feature of bloated and expensive
reference managers to the command line — with a codebase of
less than 30 lines of rather straightforward shell script. Which
is to say: It parses bibtex files in the current directory and all
parent directories and then opens a fzf-based prompt for search-
ing and selecting citekeys. The most convenient way to use
cite is to invoke it from inside a text editor that can directly in-
sert the selected references (printed to stdout using the pandoc-
markdown citation syntax) into your document.

4

https://github.com/seifferth/jotter
https://github.com/seifferth/cite

SOFTWARE 5

sgit https://github.com/seifferth/sgit

Sgit is a small wrapper around git that simplifies its use for ver-
sioning prose, where the use of atomic commits and descriptive
commit messages often goes against the natural way of doing
things. Sgit combines the ‘git add’ and ‘git commit’ workflow into
a single ‘sgit save’ command and defaults to storing snapshots
with empty commit messages. It still creates an entirely regular
git repository, however, so the full power of git is only one letter
away.

Creating and Modifying PDFs

mkpdf https://github.com/seifferth/mkpdf

Mkpdf is a wrapper around pandoc and latexmk that I use to
typeset markdown documents. It supports specifying latex tem-
plates in the yaml frontmatter and allows to use biblatex or nat-
bib to process bibliographic references. It also supports the use
of custom ‘magic lines’ in the template which can be used to
specify which latex engine and bibliography package to use in
combination with that particular template.

typewrite https://github.com/seifferth/typewrite

Have you ever felt the need tomake a pdf viewer render a simple
text file? If you do your reading on an old android tablet like
myself, you just might have. Not to worry. Converting your txt
file into a pdf is as simple as running

$ typewrite input.txt output.pdf

And the best thing: Typewrite does not only create a pdf; it
creates a pdf/txt polyglot. The original text version is right there
at the top of the output file. All you need to retrieve it is to open
the pdf in a text editor.

https://github.com/seifferth/sgit
https://github.com/seifferth/mkpdf
https://github.com/seifferth/typewrite

SOFTWARE 6

gemdoc https://github.com/seifferth/gemdoc

Gemdoc is a command line script that can be used to create
text/gemini+pdf polyglot files. The format of these polyglot files
is heavily based on the techniques proposed in the more recent
issues of the lab6 zine (hosted at lab6.com/2 and lab6.com/3 via
both gemini and https). On an implementation level, gemdoc
first converts the text/gemini input into a small subset of html
that is then further processed by weasyprint. As a consequence,
the layout of the pdf representation can be freely adjusted by
supplying user-specified css stylesheets.

As a text/gemini+pdf polyglot creation tool, gemdoc supports
twomain use cases. On the one hand, it can be used to download
— and possibly even to print — content hosted on any gemini
capsule. On the other hand, gemdoc can be used to create poly-
glot files that can themselves be hosted both via gemini and via
other network protocols. This, in turn, might be convenient for
users who want to mirror their gemini capsules via https but
who also wish to serve the same files via both protocols.

ultrafiche https://github.com/seifferth/ultrafiche

Ultrafiche is a tool I wrote to make pdf rendering just work™ in
mobile browsers. More specifically, I wanted to make pdf render-
ing work™ in chrome on android, since mobile versions of both
safari and firefox are actually quite good at handling real pdfs
already. In order to achieve this feat, ultrafiche converts pdfs
into standalone html files with embedded svg images, which
is an excellent way to break almost every useful feature of the
original file well beyond repair. I wouldn’t even blame you for
considering this one of themost appaling ways of creating a web
page. On the other hand, the result looks reasonably snappy
at a casual first glance, so for use cases where superficial first
impressions are of overriding concern, serving ultrafiche’s html-
cum-svg abominationmight still be a viable choice tomake.

https://github.com/seifferth/gemdoc
https://github.com/seifferth/ultrafiche

SOFTWARE 7

pdfcombine https://github.com/seifferth/pdfcombine

Pdfcombine is a small command line utility that allows you to
merge arbitrary pdf pages from one or more input files into
an output file. It is basically like pdfunite, but with improved
support for specifying page ranges.

Notebook Computing

mdnb https://github.com/seifferth/mdnb

Mdnb is a batch-processor for markdown notebooks that allows
to turn something like this:

```python

print("Hello World!")

```

Into something like this:

```python

print("Hello World!")

```

::: {.output exit_code="0"}

Hello World!

:::

Mdnb is also compatible with the vis-eval editor plugin de-
scribed below. If my own use is any indication, the combination
of vis-eval andmdnb provides all the features that are needed in
an interactive notebook computing environment.

https://github.com/seifferth/pdfcombine
https://github.com/seifferth/mdnb

SOFTWARE 8

unpyter https://github.com/seifferth/unpyter

While jupyter notebooks come in handy in a number of use
cases, the tooling around ‘jupyter nbconvert’ leaves something
to be desired. Most importantly, it does not support reliable back-
and-forth conversion between the json-based ipynb format and
a more human-friendly plain text representation. Unpyter fills
this particular gap in jupyter notebook tooling by providing ex-
actly that: Reliable back-and-forth conversion between ipynb
notebooks and (almost) plain python files.

Miscellaneous

notmuch-autocrypt

https://github.com/seifferth/notmuch-autocrypt

This script brings very basic support for the Autocrypt standard
(https://docs.autocrypt.org/) to notmuch (https://notmuchmail.org/).
What this script provides for the moment is a subcommand
named ‘notmuch autocrypt --locate-keys ’ that is meant to be
to Autocrypt what ‘gpg --locate-keys ’ is to WKD. Most other
features of Autocrypt are still missing, but if anyone beside my-
self should be interested in using this script, I would be quite
happy to add them.

https://github.com/seifferth/unpyter
https://github.com/seifferth/notmuch-autocrypt
https://docs.autocrypt.org/
https://notmuchmail.org/

SOFTWARE 9

timesheet https://github.com/seifferth/timesheet

There are probably thousands of tools for tracking working times
already. This one ismine.

While many of those existing tools are focussed on having
users enter their working times into some sort of database, how-
ever, this one is focussed on exporting data. As such, ‘timesheet’
parses a simple, flexible and rather human-friendly custom file
format that specifies the time when a user started or stopped
working on a specific task. The time spent is then grouped
by an arbitrary set of user-specified fields (such as day, month,
year, task name, task description, …) and is either exported as
a csv-formatted table (that could be further processed by ex-
ternal tools, such as csvkit’s excellent csvsql); or it is printed in
a custom format using arbitrary python format strings. The lat-
ter option even lends itself to programmatically generating shell
scripts that could, for example, use curl to post the data into an
arbitrary html form.

It may also be worth noting that, unlike with a number of
different time tracking systems, for ‘timesheet’, a task can be
anything a user wants it to be; from a fine-grained issue or
user story in a given ticketing system to a client’s name or even
a simple singular item called ‘work’. All a task needs to be a
task is a unique id that doesn’t contain any whitespace. (Tasks
can still have an associated description that may even contain
whitespace, however, so not to worry.)

ttm https://github.com/seifferth/ttm

Topic Modelling describes the process of using automated al-
gorithms in order to gain a high-level overview of the semantic
relationships between different texts in a possibly large text cor-
pus under investigation. While originally proposed in Compu-
tational Linguistics, this approach has also gained increasing
popularity within Digital Humanities and Digital Literary Studies
in recent years.

https://github.com/seifferth/timesheet
https://github.com/seifferth/ttm

SOFTWARE 10

TTM (short for TSV-based Topic Modelling) is a cli tool written
in python that offers a consistent interface to various topic mod-
elling algorithms implemented in third-party libraries. Further-
more, ttm also features an interface to a number of evaluation
metrics as well as some functionality that can be used to gen-
erate human-friendly descriptions of the semantic relationships
encountered through topicmodelling.

In contrast to other tools that often try to offer an integrated
one-size-fits-all solution, ttm encourages a mix-and-match ap-
proach to using the various steps of different topic modelling
frameworks. In order to provide maximum flexibility, the data
is passed along between the different steps as a tsv-formatted
table, where each row represents a document (or part of a doc-
ument that has been split into multiple pages) and where each
step of the topic modelling process adds a new column to the
dataset. This allows to easily combine the use of ttm with other
tools for investigating and transforming tabular datasets, such
as cut, csvkit or the visidata editor for tabular data.

dollar_templates

https://github.com/seifferth/dollar_templates

‘Dollar templates’ provides a slim (and partial, although it might
have already reached that famous 80/20 mark) reimplementa-
tion of pandoc’s templating engine in plain python. It provides
two simple library functions for expanding pandoc-style tem-
plates from any python project; and it may alleviate the need of
adding a massive dependency like pypandoc and the whole pan-
doc binary to a project. ‘Dollar templates’ also integrates rather
better with python projects in general as it is written in plain py-
thon itself and thus allows expanding templates without relying
on temporary files or other, even more involved forms of inter-
process-communication.

https://github.com/seifferth/dollar_templates

SOFTWARE 11

Vis Plugins

My text editor of choice is vis (https://martanne.github.io/vis/);
a modern implementation of the well known vi text editor en-
hanced with support for structural regular expressions and mul-
tiple cursors. Among other niceties, vis also includes a very
powerful lua api that can be used to write custom plugins. Over
time, I also wrote a number of plugins for that text editor my-
self.* These plugins are described below.

vis-bytepos https://github.com/seifferth/vis-bytepos

The vis-bytepos plugin adds a very simple function for display-
ing the current byte offset of the primary cursor when pressing
‘gi’ in normal mode. This functionality can come in handy when
editing files in binary (or partially binary) file formats where the
byte offset is important; such as pdf files, for instance.

vis-editorconfig https://github.com/seifferth/vis-editorconfig

This plugin implements most of the functionality described at
https://editorconfig.org/. It thus allows to use ‘.editorconfig ’ files
for specifying things like tab width, indentation style or the lan-
guage settings to use when running a spellchecker. It also im-
plements some of the more resource-intensive functionality as
hooks that can optionally be executed every time a file is saved;
such as trimming trailing whitespace from all lines or changing
all newline characters to either LF or CRLF according to the set-
tings specified in the editorconfig profile for the file being ed-
ited.

*Furthermore, I also took over maintenance of one more plugin, vis-
editorconfig, from its original developer.

https://martanne.github.io/vis/
https://github.com/seifferth/vis-bytepos
https://github.com/seifferth/vis-editorconfig
https://editorconfig.org/

SOFTWARE 12

vis-eval https://github.com/seifferth/vis-eval

The vis-eval plugin allows the evaluation of arbitrary markdown
code blocks in any file being edited with vis. This simple addition
effectively allows to turn vis from a simple text editor into a basic
notebook computing environment. In essence, this plugin will
simply search for the closest code block akin to the following
one located anywhere above the primary cursor

```python

print("Hello World!")

```

Upon pressing ‘g<Enter>’, this block will be expanded with
the output produced by the specified command, which would
turn the above code block into something like this

```python

print("Hello World!")

```

::: {.output exit_code="0"}

Hello World!

:::

When compared to more established notebook computing
environments such as jupyter, vis-eval is both very basic and
very simple. While jupyter automagically propagates the state
of variables between cells, for instance, vis-eval simply invokes
standard shell commands and passes them the contents of the
code block to be evaluated on stdin. If any state is to be propag-
ated between code blocks with vis-eval, the programmer would
usually need to manually add the code for storing this state to or
for loading it from disk. While this might seem like a limitation
in some cases, it also greatly simplifies mixing code blocks writ-
ten in different programming languages. And when combined
with interpreter commands that implicitly persist state to disk
by themselves — such as ‘sqlite3 some.db ’ , for example — the
vis-eval plugin even provides an incredibly powerful notebook
computing experience out of the box.

https://github.com/seifferth/vis-eval

SOFTWARE 13

If your notebook becomes large and you wish to re-evaluate
a large number of code blocks, you may also be interested in
combining your use of vis-eval with that of mdnb.

vis-super-shellout

https://github.com/seifferth/vis-super-shellout

The vis-super-shellout plugin provides a slightly different ver-
sion of the built-in ‘:< ’ command. Both the built-in ‘:< ’ com-
mand and the ‘:R ’ command provided by vis-super-shellout al-
low adding the output of arbitrary shell commands to the file
opened in vis. The built-in version of that command does not re-
lease stdout, however, whichmakes it impossible to run interact-
ive commands like fzf (https://github.com/junegunn/fzf/) or cite
(https://tilde.club/~seifferth/#software:cite). The ‘:R ’ command,
in contrast, allows to run these programswithout issue.

Furthermore, the ‘:R ’ command also strips a single final
newline from the output returned by the shell command if
present. In my experience, this makes it a little more convenient
to use common shell commands such as ‘date ’ , which often re-
turn a single line terminated by a single newline character.

vis-todo https://github.com/seifferth/vis-todo

The vis-todo plugin adds a very simple function to jump to the
next occurrence of the uppercase string ‘TODO ’ when pressing
‘gt’ in normal mode. This can come in handy if one wants to
mark specific lines in a source file in order to quickly return to
them later on.

https://github.com/seifferth/vis-super-shellout
https://github.com/junegunn/fzf/
https://tilde.club/~seifferth/#software:cite
https://github.com/seifferth/vis-todo

Colophon

The things I link to from this website are usually made available
under free copyleft licenses. For software repositories, I usually
choose the GNU General Public License version 3 (GPLv3), while
for the more literary parts, I commonly use the Creative Com-
mons Attribution-ShareAlike License version 4.0 (CC BY-SA 4.0).
Also note that CC BY-SA 4.0 explicitly allows to change the li-
cense of derivative works to GPLv3, so if you want to incorpor-
ate code snippets from a CC BY-SA 4.0 licensed blog post into
a GPLv3 licensed piece of software, for example, you are very
much allowed to do so.

If I should have forgotten to add a license to any of the files or
repositories linked to from this site, feel free to drop me a note.
If you wish to redistribute this index file itself, you are also very
welcome to do so under the terms of the CC BY-SA 4.0 license.

14

https://www.gnu.org/licenses/gpl-3.0.txt
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.gnu.org/licenses/gpl-3.0.txt
https://creativecommons.org/licenses/by-sa/4.0/
https://www.gnu.org/licenses/gpl-3.0.txt
https://creativecommons.org/licenses/by-sa/4.0/

	Title Page
	Blog / Writing
	Software
	Writing Utilities
	jotter
	cite
	sgit

	Creating and Modifying PDFs
	mkpdf
	typewrite
	gemdoc
	ultrafiche
	pdfcombine

	Notebook Computing
	mdnb
	unpyter

	Miscellaneous
	notmuch-autocrypt
	timesheet
	ttm
	dollar_templates

	Vis Plugins
	vis-bytepos
	vis-editorconfig
	vis-eval
	vis-super-shellout
	vis-todo

	Colophon

